Sara Malacarne

Circle Attention: Forecasting Network Traffic by Learning Interpretable Spatial Relationships from Intersecting Circles (2023)

Circle Attention: Forecasting Network Traffic by Learning Interpretable Spatial Relationships from Intersecting Circles (2023)

ECML-PKDD 2023

Abstract Accurately forecasting traffic in telecommunication networks is essential for operators to efficiently allocate resources, provide better services, and save energy. We propose Circle Attention, a novel spatial attention mechanism for telecom traffic forecasting, which directly models the area of effect of neighboring cell towers. Cell towers typically point in three different geographical directions, called sectors. Circle Attention models the relationships between sectors of neighboring cell towers by assigning a circle with learnable parameters to each sector, which are: the azimuth of the sector, the distance from the cell tower to the center of the circle, and the radius of the circle.
Explainable Anomaly Detection using Masked Latent Generative Modeling (2023)

Explainable Anomaly Detection using Masked Latent Generative Modeling (2023)

arXiv

Abstract We present a novel time series anomaly detection method that achieves excellent detection accuracy while offering a superior level of explainability. Our proposed method, TimeVQVAE-AD, leverages masked generative modeling adapted from the cutting-edge time series generation method known as TimeVQVAE. The prior model is trained on the discrete latent space of a time-frequency domain. Notably, the dimensional semantics of the time-frequency domain are preserved in the latent space, enabling us to compute anomaly scores across different frequency bands, which provides a better insight into the detected anomalies.
Masked Generative Modeling with Enhanced Sampling Scheme (2023)

Masked Generative Modeling with Enhanced Sampling Scheme (2023)

arXiv

Abstract This paper presents a novel sampling scheme for masked non-autoregressive generative modeling. We identify the limitations of TimeVQVAE, MaskGIT, and Token-Critic in their sampling processes, and propose Enhanced Sampling Scheme (ESS) to overcome these limitations. ESS explicitly ensures both sample diversity and fidelity, and consists of three stages: Naive Iterative Decoding, Critical Reverse Sampling, and Critical Resampling. ESS starts by sampling a token set using the naive iterative decoding as proposed in MaskGIT, ensuring sample diversity.
Vector Quantized Time Series Generation with a Bidirectional Prior Model (2023)

Vector Quantized Time Series Generation with a Bidirectional Prior Model (2023)

AISTATS 2023

Abstract This paper presents a novel sampling scheme for masked non-autoregressive generative modeling. We identify the limitations of TimeVQVAE, MaskGIT, and Token-Critic in their sampling processes, and propose Enhanced Sampling Scheme (ESS) to overcome these limitations. ESS explicitly ensures both sample diversity and fidelity, and consists of three stages: Naive Iterative Decoding, Critical Reverse Sampling, and Critical Resampling. ESS starts by sampling a token set using the naive iterative decoding as proposed in MaskGIT, ensuring sample diversity.