CNN

Ensemble and Self-supervised Learning for Improved Classification of Seismic Signals from the Åknes Rockslope (2022)

Ensemble and Self-supervised Learning for Improved Classification of Seismic Signals from the Åknes Rockslope (2022)

Mathematical Geosciences

Abstract A case study with seismic geophone data from the unstable Åknes rock slope in Norway is considered. This rock slope is monitored because there is a risk of severe flooding if the massive-size rock falls into the fjord. The geophone data is highly valuable because it provides 1000 Hz sampling rates data which are streamed to a web resource for real-time analysis. The focus here is on building a classifier for these data to distinguish different types of microseismic events which are in turn indicative of the various processes occurring on the slope.
A Deep Learning-Based Method for Regional Wind Power Production Volume Prediction (2020)

A Deep Learning-Based Method for Regional Wind Power Production Volume Prediction (2020)

NTNU

Abstract The aim of this thesis was to predict the wind power production volume of a large geographical region given the Numerical Weather Prediction data (NWP) over the region using deep learning. Accurate production volume predictions is important for power grid balancing, production planning, and price estimation. Having an accurate forecast for the upcoming wind power production volume has become more and more important in the past years due to the fast increasing number of installed wind turbines and installed total production capacity.